Fill in the blanks. (2 points each)
CIRCLE T FOR TRUE, F FOR FALSE.(2 pts each)
(1) $\ln \left(e^{\cos x}\right)=\cos x$
(1) F
(6) $\frac{d}{d x} \log _{5} x=\frac{1}{x \ln 5}$.
$\xrightarrow[+1]{4}$
(2) $\lim _{x \rightarrow \infty} e^{-x}=0$

T F
(7) $\frac{d}{d x}\left[4^{x}\right]=4^{x}$
(3) $\cos ^{-1}\left(\frac{-\sqrt{2}}{2}\right)=\frac{3 \pi}{4}$
(T) F
(8) $\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)=\frac{-\pi}{4}$.
\rightarrow
(4) $\lim _{x \rightarrow 0^{+}} \ln x=-\frac{\infty}{3 / 5}$
(T)
(9) $\int e^{7 x} d x=\frac{1}{7} e^{7 x}+C$
(T) F
(10) $e^{\sin (x) \ln (x)}=x^{\sin (x)}$
(11) Given $f(x)=x^{3}+3 \sin x+4 \cos x$,
(a) Find $\left(f^{-1}\right)^{\prime}(4)$
$f^{\prime}(x)=3 x^{2}+3 \cos x-4 \sin x$$\quad \begin{aligned} & f^{-1}(4)=0 \\ & \left(f^{-1}\right)^{\prime}(4)=\frac{1}{f^{\prime}\left(f^{-1}(4)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{3}\end{aligned}$
work on presentation. Show steps in such a way some one could follow your thought process.
(b). Given the graph of $f(x)$, sketch the graph of $f^{-1}(x)$ and use it to explain if why your answer in part a is is reasonable. (2 points)
The graph of $f^{-1}(x)$ reflection of the graph of $f(x)$ across $y=x$. $(0,4)$ is on $f,(4,0)$ is on $f^{-1}(x)$. Looking at the grephi a slope of $1 / 3$ for tangent to $f(x)$

at $x=4$
is
(12) Find the derivative of each of the following functions and simplify: (4 pts each)
(a) $y=\ln \left(\frac{e^{x}}{\sqrt{x^{2}+1}}\right)$ use ${ }^{\log }$ properties to $\operatorname{simplify}$ (b) $y=\ln (4 x)\left(\cos ^{-1} x\right)$ before diffectitiating there is an easy approach

$$
\begin{aligned}
& y=\ln e^{x}-\ln \left(x^{2}+1\right)^{1 / 2} \\
& y=x-\frac{1}{2} \ln \left(x^{2}+1\right) \\
& y^{\prime}=1-\frac{1}{2} \frac{1}{x^{2}+1} \cdot 2 x \\
& y^{\prime}=1-\frac{x}{x^{2}+1}
\end{aligned}
$$

$$
\text { (c) } y=e^{\tan ^{-1}(5 x)}
$$

$$
y^{\prime}=e^{\tan ^{-1}(5 x)} \frac{d}{d x}\left(\tan ^{-1}(x)\right.
$$

$$
y^{\prime}=e^{\tan ^{-1}(5 x)} \frac{1}{1+(5 x)^{2}} \frac{d}{d x} 5 x
$$

$$
y^{\prime}=\frac{5 e^{\tan ^{-1}(5 x)}}{1+25 x^{2}}
$$

can also do part (a) directly:

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\frac{e^{x}}{\sqrt{x^{2}+1}}} \frac{\frac{d}{d x}\left(\frac{e^{x}}{\sqrt{x^{2}+1}}\right)=\frac{\sqrt{x^{2}+1}}{e^{x}} \frac{d}{d x}\left(\frac{e^{x}}{\sqrt{x^{2}}+1}\right)}{} \\
& =\frac{\sqrt{x^{2}+1}}{e^{x}} \frac{\sqrt{x^{2}+1} e^{x}-e^{x} \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)}{x^{2}+1}
\end{aligned}
$$

$$
=\frac{x^{2}+1-x}{x^{2}+1}
$$

(a) $y=x+\operatorname{cog}$ untune

$$
\begin{aligned}
& \ln y=\ln x \\
& \ln y=\sqrt{x} \ln x \\
& \frac{1}{y} y^{\prime}=\frac{1}{2 \sqrt{x}} \ln x+\sqrt{x} \cdot \frac{1}{x} \\
& y^{\prime}=y\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right) \\
& y^{\prime}=x^{\sqrt{x}}\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right) \\
& y^{\prime}=x^{\sqrt{x}}\left(\frac{\ln x+2}{2 \sqrt{x}}\right)
\end{aligned}
$$

(13). Find $\frac{d y}{d x}$ if $y^{2}=\ln \left(x^{3}+y\right) \cdot(6$ points $)$
impliat differentiation

$$
\begin{aligned}
& \qquad \frac{d}{d x} x^{2}=\frac{d x}{d x} \ln \left(x^{3}+y\right) \\
& 2 y y^{\prime}=\frac{1}{x^{3}+y} \frac{d}{d x}\left(x^{3}+y\right) \\
& 2 y y^{\prime}=\frac{1}{x^{3}+y}\left(3 x^{2}+y^{\prime}\right) \\
& \left(x^{3}+y\right) 2 y y^{\prime}=3 x^{2}+y^{\prime} \\
& \text { solve } 2 x^{3} y y^{\prime}+2 y^{2} y^{\prime}=3 x^{2}+y^{\prime} \\
& \text { for } y^{\prime} 2 x^{3} y y^{4}+2 y^{2} y^{\prime}-y^{\prime}=3 x^{2} \\
& y^{\prime}\left(2 x^{3} y+2 y^{2}-1\right)=3 x^{2}
\end{aligned} \quad y^{\prime}=\frac{3 x^{2}}{2 x^{3} y+2 y^{2}-1}
$$

(14) Find local extrema values for $f(x)=x \ln x$ Classify as max or min. Show how you know it is a
max/min. (6 points)
Find critical numbers:

$$
\begin{gathered}
f^{\prime}(x)=\ln x+x \cdot \frac{1}{x}=\ln x+1 \\
f^{\prime}(x)=0 \Rightarrow \ln x+1=0 \\
x=e^{-1}
\end{gathered}
$$ words claries explanation and shows understarating

First derivative test

local min at $\left(\frac{1}{e}, \frac{-1}{e}\right)$

$$
\text { (a) } \begin{gathered}
\int e^{x} \sqrt{2 e^{x}-1} d x \\
u=2 e^{x}-1 \\
d u=2 e^{x} d x \\
d x=\frac{1}{2} \int u^{1 / 2} d u \\
=\frac{1}{2} \frac{2}{3} u^{3 / 2}+c \\
=\frac{1}{3}\left(2 e^{x}-1\right)^{3 / 2}+c
\end{gathered}
$$

$$
\int e^{x} \sqrt{2 e^{x}-1} d x=\frac{1}{2} \int u^{1 / 2} d u
$$

(c) $\int \frac{3}{x \sqrt{4 x^{2}-4}} d x$

$$
\begin{aligned}
& =\frac{3}{2} \int \frac{1}{x \sqrt{x^{2}-1}} d x \\
& =\frac{3}{2} \sec ^{-1} x+c
\end{aligned}
$$

$$
\begin{gathered}
\text { (b) } \int_{0}^{1 / 6} \frac{2}{\sqrt{1-9 x^{2}}} d x \begin{array}{c}
u-3 x \\
d u=3 d x
\end{array} \\
\frac{1}{3} \int_{0}^{1 / 2} \frac{2}{\sqrt{1-u^{2}}} d u \\
\left.\frac{2}{3} \sin ^{-1} u\right]_{0}^{1 / 2} \\
\frac{2}{3} \sin ^{-1} 1 / 2=\frac{2}{3} \cdot \frac{\pi}{6} \\
\frac{\pi}{9}
\end{gathered}
$$

(d)

$$
\begin{aligned}
& \int \frac{\cos x}{1+\sin ^{2} x} d x \\
& u=\sin x \\
& d u=\cos x d x \\
& \int \frac{\cos x}{1+\sin ^{2} x} d x=\int \frac{1}{1+u^{2}} d u \\
& =\tan ^{-1} u 1-c \\
& =\tan ^{-1}(\sin x)+c
\end{aligned}
$$

Cancheck indefinite integrals by differentiating

(15 (cont'd)
(e) $\int \frac{\cos (\ln x)}{x} d x$
$u=\ln x$

$$
d u=\frac{1}{x} d x
$$

$=\int \cos u d y$
$=\sin u+c$
$=\sin (\ln x)+c$

$$
\begin{aligned}
& \text { (f) } \int \frac{1}{3 x+7} d x \quad \begin{array}{r}
u-3 x+7 \\
d u=3 d x
\end{array} \\
& =\frac{1}{3} \int \frac{1}{u} d u \\
& =\frac{1}{3} \ln |u|+c \\
& =\frac{1}{3} \ln |3 x+7|+C
\end{aligned}
$$

(16) Find each of the following limits. Calculus steps must be shown and correct notation must be used:
(4 pts each)
(a) $\begin{aligned} & \lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}} \quad \text { "O" should not be } \\ & =\text { symbol }\end{aligned}$ Apply Lithospital's rule

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}} \quad " \circ \\
& =\lim _{x \rightarrow 0} \frac{-\sin x}{6 x} \div \circ \\
& =\lim _{x \rightarrow 0} \frac{-\cos x}{6}=-\frac{1}{6}
\end{aligned}
$$

written at each step
(16 cont'd)
(b) $\lim _{x \rightarrow 0^{+}}\left(x^{2} \ln x\right) \quad$ " $0 . \infty_{0}$ "
(c)

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow 0^{+} \\
0^{\circ}}} x^{\sin x}=\lim _{x \rightarrow 0^{+}} e^{\sin x \ln x} \\
&=e^{\lim _{x \rightarrow 0^{+}} \sin x \ln x} \\
&=e^{0} \\
& \lim _{x \rightarrow 0^{+}} \sin x \ln x \quad 0 \cdot-\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{\sin x}} \\
&=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\cos x} \\
& \sin ^{2} x
\end{aligned} \quad \begin{array}{ll}
& =\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2} x}{x \cos x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-2 \sin x \cos x}{\cos x-x \sin x} \\
& =0
\end{array}
$$

